Nilai lim_(x→1) ⁡(1/(1-x)-2/(x-x^3 ))=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x \to 1} \ \left( \frac{1}{1-x} - \frac{2}{x-x^3} \right) = \cdots \)

  1. \( -\frac{3}{2} \)
  2. \( -\frac{2}{3} \)
  3. \( \frac{2}{3} \)
  4. \( 1 \)
  5. \( \frac{3}{2} \)

(UM UGM 2005)

Pembahasan:

\begin{aligned} \lim_{x \to 1} \ \left( \frac{1}{1-x} - \frac{2}{x-x^3} \right) &= \lim_{x \to 1} \ \left( \frac{1}{1-x} - \frac{2}{(x)(1-x)(1+x)} \right) \\[8pt] &= \lim_{x \to 1} \ \frac{x(x+1)-2}{(x)(1-x)(1+x)} \\[8pt] &= \lim_{x \to 1} \ \frac{x^2+x-2}{(x)(1-x)(1+x)} \\[8pt] &= \lim_{x \to 1} \ \frac{(x-1)(x+2)}{(x)(1-x)(1+x)} \\[8pt] &= \lim_{x \to 1} \ \frac{-(1-x)(x+2)}{(x)(1-x)(1+x)} \\[8pt] &= \lim_{x \to 1} \ \frac{-(x+2)}{(x)(1+x)} = \frac{-(1+2)}{(1)(1+1)} \\[8pt] &= -\frac{3}{2} \end{aligned}

Jawaban A.